USER'S MANUAL
 FOR
 LSTSQR-1

by
William A. Carpenter
Research Engineer
(The opinions, findings, and conclusions expressed in this report are those of the author and not necessarily those of the sponsoring agencies.)

Virginia Highway \& Transportation Research Council
(A Cooperative Organization Sponsored Jointly by the Virginia
Department of Highways $\%$ Transportation and
the University of Vinginia)
Charlottesville, Virginia
June 1976
VHTRC 76-R59
2822

Abstract

This manual details the preparation of data for and the interpretation of output from the least squares computer program LSTSQR-1. The material presented here will be somewhat difficult for the non-computer oriented professional to interpret on the first reading. However, the professional researcher should find after an initial reading, some consultation with the data processing staff, and a little practice that he can easily design, prepare, and interpret his own data analyses.

LSTSQR-1 performs least squares curve fitting of data pairs under a wide variety of I/O and processing options. LSTSQR-1 accepts any number of consecutive data sets and any number of data points per data set. Data may come from any of six input files and may be read under any format specifying one data pair per record. The independent and dependent variables of the regression may be assigned and generated interchangeably and independently using a set of nine transformation functions each available in nineteen powers ranging from -9 to +9 . Also the independent and dependent variable titles and the regression title may be supplied by the user. All regressions are polynomials in the independent variable of degree 1 through 9 with or without a constant term. Finally, the extent of output is under user control.

USER'S MANUAL
 FOR
 LSTSQR-1

by
William A. Carpenter Research Engineer

INTRODUCTION

This report details the mechanics and philosophy of using LSTSQR-1, a computer program designed by W. A. Carpenter to perform a wide variety of regression analyses under a very. flexible set of user controls. LSTSQR-1 and this manual provide the professional researcher with a valuable analytical tool.

The first section of this report details the command structure and input requirements of LSTSQR-1. The second section explains the formulation, meaning, and use of the regression statistics supplied by LSTSQR-1. Section three contains an example problem and program listing.

INPUT STRUCTURE
A LSTSQR-1 job for the CDC6400 computer (LSTSQR-1 is IBM compatible with appropriate JCL) consists of

1. Red Header Card,
2. REQUEST (TAPE7,*A*),
3. REQUEST (TAPE8,*A*),
4. ATTACH Cards for any files TAPE9 through TAPEl3 which are to be used for auxillary data input,
5. $\operatorname{FTN}(L=0)$.,
E. LGO.,
6. Orange $C R$ Data Card,
7. LSTSQR-1 Source Deck,
8. Orange CR Data Card,
9. LSTSQR-1 Data Deck,
10. Blue END Card

A LSTSQR-1 Data Deck consists of a sequence of data sets. Each such data set consists of command cards, specifying those options to be used, and the data (or the location of the data) to be analyzed.

Command Cards

Each data set consists of one or more command cards followed (optionally) by the data to be analyzed. The last. command card in each data set must be either NEW or OLD. All other command cards are semi-optional. LSTSQR-1 is initialized (at compilation time) with a set of values for all command options. This set of options is then upgraded from data set to data set by means of commanc cards. Thus, for instance, if the LST command card is omitted from a data set, the list option remains unchanged from its previous value. (The user should note that omission of a command card does not generate a default to the initial value of that commard but only to the previous value.) The valid commands and their parameters are given below.

Degree Command Card

The DEG card, format (A3,IX,II), specifies the degree of the regression equation to be employed. The DEG card is structured as follows:

Columns 1 - 3 , (A3): The alpha-string "DEG."
Column 5, (II) : D, the degree to be used.
D must be $1 \leq D \leq 9$, otherwise the previous value of D will be used.

Independent Variable Command Card
The IND card, fonmat (A3,2(1X,II),1X,I2), specifies which variable in each input record (the first or second) is to be the independent variable, iV, how that variable is to be transformed, and what exponent is to be used in the transformation.

The transformation structure is

Transform Number, IN			Transformation
1	IV	$=$	VARIABLE (IK) $\%$ \% IP
2	IV	$=$	$\log _{e}(\operatorname{VARIABLE}(I K) * * I P)$
3	IV	=	$\log _{10}($ VARIABLE $(I K) * * I P)$
4	IV	$=$	Exp (VARIABLE (IK) \% \% IP)
5	IV	$=$	$\operatorname{Exp}(-(V A R I A B L E(I K) * * I P)$
6	IV	$=$	Sin (VARIABLE (IK) \% * If)
7	IV	$=$	Cos (VARIABLE (IK) $\%$ \% IP)
8	IV	$=$	Sinh (VARIABLE (IK) **IP)
9	IV	$=$	Cosh (VARIABLE (IK) **IP)

The IND card is structured as follows:

Columns	1-3, (A3)	The alpha-string "IND."
Column	5, (I1)	IK, the variable number, IK must be $1 \leq I K \leq 2$, otherwise, the previous value of IK will be used.
Column	7, (I1)	IN, the transformation number. IN must be $1 \leq I N \leq 9$, otherwise, the previous value of IN will be used.
Columns	9-1.0, (I2):	IP, the transformation power. IP must be $-9 \leq I P \leq 9$, otherwise, the previous value of IP will be used.

Dependent Variable Command Card
The DEP card, format (A3,2(1X,I1),1X,I2) specifies which variable in each input record (the first or second) is to be the depencent variabie, $D V$, how that variable is to be transformed, and what exponent is to be used in the transformation. The
transformation structure is

Transform Number, DN
1
2
3
4
5
6
7
8
9

Transformation
$D V=\operatorname{VARIABLE}(D K) * * D P$
$D V=\log _{e}(V A R I A B L E(D K) * * D P)$
$D V=\log _{I 0}(V A R I A B L E(D K) * * D P)$
$D V=\operatorname{Exp}(V A R I A B L E(D K) * * D P)$
$D V=\operatorname{Exp}(-(V A R I A B L E(D K) * * D P))$
$D V=\operatorname{Sin}(V A R I A B L E(D K) * * D P)$
$D V=\operatorname{Cos}(V A R I A B L E(D K) * * D P)$
$D V=\operatorname{Sinh}(V A R I A B L E(D K) * * D P)$
$D V=\operatorname{Cosh}(V A R I A B L E(D K) * * D P)$
$D V=\log _{e}(V A R I A B L E(D K) * * D P)$
$D V=\log _{10}(\operatorname{VARIABLE}(D K) * * D P)$
$D V=\operatorname{Exp}(V A R I A B L E(D K) * * D P)$
$D V=\operatorname{Exp}(-(\operatorname{VARIABLE}(D K) * * D P))$
$D V=\operatorname{Sin}(V A R I A B L E(D K) * * D P)$
$D V=\operatorname{Cos}(V A R I A B L E(D K) * * D P)$
$D V=\operatorname{Sinh}(V A R I A B L E(D K) * * D P)$
$D V=\cosh (V A R I A B L E(D K) * * D P)$

The DEP card is structured as follows

Title Command Card

The TLE card, format (A3, T41,10A4), specifies the tiさle (heading) to be placed on the output. The TLE card is structured as follows

Columns $1-3$, (A3) : The alpha string "TLE."

Columns 41-80, (10A4) : A forty-character alpha string. Heading information should be centered in these forty columns.

Variable -1 Title Command Card
The ONE card, format (A3,T41,10A4), specifies the title (description) of the first variable on each data card. This information is output as part of LSTSQR-1 heading. The ONE card is structured as follows

Columns $1-3,(\mathrm{~A} 3)$	The alpha string "ONE."
Columns 41-80, (10A4) $:$A forty-character alpha string. Heading information should be centered in these forty columns.	

Variable -2 Title Command Card
The TWO card, format (A3, T4l,10A4), specifies the title (description) of the second variable on each data card. This information is output as part of LSTSQR-1 heading. The TWO card is structured as follows

$$
\begin{aligned}
\text { Columns } 1-3,(\mathrm{~A}) \quad & \text { The alpha string "TWO." } \\
\text { Columns } 41-80,(10 \mathrm{~A} 4): & \text { A forty-character alpha string. } \\
& \begin{array}{l}
\text { Heading information should be } \\
\text { centered in these forty columns. }
\end{array}
\end{aligned}
$$

Format Command Card

The FMT card, format (A3, T41,10A4), specifies the format under which the data (one data pair per record) are to be read. The FMT card is structured as follows

Columns 1-3, (A3) : The alpha string "FMT."
Columns 41-80, (10A4) : The data format. The format must be enclosed in parentheses and the word "format" must not appear. Only F, X, and T formats are allowed.

Zero Command Card e
The ZRO card, format (A3,T12,L1), specifies whether or not the regression equation should be forced through the origin, i.e., through zero. The ZRO card is structured as follows

Columns 1-3, (A3) : The alpha string "ZRO."
Column 12, (L1) : "T" (force through zero) or "F" (do not force through zero).

List Command Car®

The LST card, format (A3,T12,L1), specifies whether or not a table of actual vs. estimated dependent variables should be printed as part of the output. The LST card is structured as follows

Columns 1 - 3 , (A3) : The alpha string "LST."
Column 12, (L1) : "T" (print the table) or
"F" (do not print the table).

New Data Command Card
The NEW card, format (A3,1X,II), specifies that data is to be read in for this analysis and also which file the data is on. The NEW card is structured as follows

Columns 1 - 3, (A3) : The alpha string "NEW."
Column 5, (II) : F, the file on which the data resides. Note, there is a special defauit associated with F. If column 5 is left blank, F reverts to file 5, the card reader file. LSTSQR-1 has reserved files 9 through 13 as auxillary input files for the usep. The user should consult a LSTSSQR-1 source listing before using any input file other than the card file.

Old Data Command Card

The OLD card, format(A3), specifies that the data from the previous data set is to be used in this analysis. The OLD card is structured as follows

Initial Values of Command Card Parameters

The reader should recall that when defaults occur they reference the previous value of the defaulted variable, which is not necessarily the initial value. The initial parameter values are as follows.

DEG Card

$$
D=1
$$

IND Card

$$
I K=I
$$

$I N=I$
$I P=1$
DEP Card
$D K=2$
$\mathrm{DN}=1$
$D P=1$
TLE Card
TITLE = (ten blanks) "Title omitted by user" (nine blanks)
ONE Card

TWO Card
VARNAM(2) = (fifteen blanks) "Variabie 2" (fifteen blanks)
FMT Card

$$
\text { FORMAT }=\text { "(2E13.0)" (thirty-two blanks) }
$$

ZRO Card

```
    ZERO = FALSE
LST Card
LIST = TRUE
```

Invalid Command Cards
If LSTSQR-I finds a command card which does not have a valid three-character string in columns 1-3, it will output an error. message and skip to the next accessible data set on file 5 .

Data Cards

The data cards (or data records if data are on tape or disk) contain the data pairs to be analyzed as described by the command cards. If data are on cards, the data cards for the data set in question must immediately follow the NEW command card for the data set in question and must be terminated by an END card. (An END card is simply a card with the alpha string "END" in columns 1-3.) The command cards for the next data set will then immediately follow the END card. If the data for any data set is that from the previous data set, then an OLD command card must be used, and no data cards may appear in the data set. The command cards for the next data set will then immediately follow the OLD card. If the data for any data set is on a file other than the card file, file 5, then a NEW command card (with a file specified) must be used, and no data cards may appear in the data set. The command cards for the next data set will then immediately follow the NEW card.

LSTSQR-1 STATISTICAL OUTPUT
This section explains the formulation, meaning and usage of the statistics output by LSTSQR-1.

Definitions

Independent Variable, IV
As explained in the previous section, the independent variable is VARIABLE (IK) raised to the IP power and then transformed according to transform IN. LSTSQR-1 outputs (in the upper lefthand corner of page one of each data set) the description of VARIABLE (IK) and the equation relating IV and VARIABLE (IK).

Dependent Variable, DV
As explained in the previous section, the dependent variable is VARIABLE (DK) raised to the DP power and then transformed according to transform DN. LSTSQR-1 outputs (in the upper righthand corner of page one of each data set) the description of VARIABLE (DK) and the equation relating DV and VARIABLE (DK).

Number of Data Points, N
LSTSQR-1 outputs (at the top center of page one of each data set) the number of data points used to perform the analysis.

Regression Equation and Degree, D \& J
LSTSQR-1 lists (at the top center of page one of each data set) the polynomial regression equation used in the analysis. This equation is shown simply as

$$
D V=\sum_{i=0}^{D} A_{i} x(I V)^{i}
$$

where D is the degree of the regression equation. The regression coefficients $A_{o}, A_{1} \ldots A_{D}$ are listed following an optioral regression table. $J=D$ when $A_{O}=0$ (by using ZRO, TRUE comnand) and $J=D^{+1}$ when A_{0} is not forced to be zero.

Regression Estimate of Dependent Variable, DVE

The regression estimate of the dependent variable, DVE, corresponding to independent variable, IV, is found by substituting IV in the regression equation.

Regression Error, (DV-DVE)
The regression error (or estimation error) corresponding to the independent variable, IV, is found by evaluating (DV-DVE) corresponding to IV.

Average Squared Regression Error, AVG [(DV-DVE) ${ }^{2}$]
The average squared regression error is defined as

$$
\text { AVG }\left[(D V-D V E)^{2}\right]=\frac{1}{N} \sum_{i=1}^{N}(D V-D V E)_{i}^{2} .
$$

Variance of Error of Estimate, VAR(DV-DVE)*
The variance of the error of estimate is defined as

$$
\operatorname{VAR}(D V-D V E)=\frac{1}{N-J} \sum_{i=1}^{N}(D V-D V E)_{i}^{2}
$$

Standard Error of Estimate, STD(DV-DVE)*
The standard error of estimate (the standard deviation of the regression error) is defined as

$$
\operatorname{STD}(D V-D V E)=\sqrt{V A R(D V-D V E)}
$$

Variance of Independent Variabje, VAR (IV)
The variance of the independent variable is defined as

[^0]Standard Deviation of Independent Variable, STD(IV)
The standard deviation of the independent variable is defined as

$$
\operatorname{STD}(I V)=\sqrt{\operatorname{VAR}(I V)}
$$

Variance of Dependent Variable VAR(DV)
The variance of the dependent variable is defined as

$$
\operatorname{VAR}(D V)=\frac{N}{N-1}\left[\frac{1}{N} \sum_{i=1}^{N}(D V)_{i}^{2}-\left(\frac{1}{N} \sum_{i=1}^{N}(D V)_{i}\right)^{2}\right]
$$

Standard Deviation of Dependent Variable, STD(DV)
The standard deviation of the dependent variable is defined as

```
STD(DV) = \sqrt{}{VAR(DV).}
```

Index of Determination, R^{2} *
The index (coefficient) of determination is defined as

$$
R^{2}=1-\frac{\operatorname{VAR}(D V-D V E) \times(N-U)}{\operatorname{VAR}(D V) \times(N-1)} .
$$

Index of Correlation, $R *$

The index (coefficient) of correlation is defined as $R=\sqrt{R^{2}}$.
*R and R^{2} are not calculated for the case in which the regression equation is forced through the origin.

Regression Covariance Matrix, $M(i, j) ; i, j=0, D$
The regression covariance matrix is the inverse of the least-squares regression matrix. This matrix has the following properties.

$$
\begin{aligned}
& \operatorname{VAR}(D V-D V E) \times M(i, i)= \begin{array}{l}
\text { Variance of the } i^{\text {th }} \text { regression } \\
\\
\text { coefficient }
\end{array} \\
& \operatorname{STD~(DV-DVE)\times \sqrt {M(i,i)}=} \begin{array}{l}
\text { Standard deviation of the } i^{\text {th }} \\
\text { regression coefficient }
\end{array} \\
& \operatorname{VAR}(D V-D V E) \times M(i, j)=\begin{array}{l}
\text { Covariance between the } i^{\text {th }} \text { and } \\
\end{array} \quad j \text { thegression coefficients. } .
\end{aligned}
$$

F1 and F2 Relationships
F (functional) relationships are characterized by having an underlying functional relationship between IV and DV: (eq. Hooke's Law, Velocity-Distance Relationships). When a functional relationship exists between IV and $D V, R$ (and R^{2}) does not measure the correlation between IV and DV (implicitly IV and DV are completely correlated) but rather serves as a measure of how well the data group about the existing functional relation. Thus a small value of R does not imply that the functional relationship is incorrect, but rather that the data are excessively variable (poor technique or high experimental error).

S1 and S2 Relationships

S (statistical) relationships are characterized by a lack of an exact mathematical relationship between IV and DV (eq. Age vs. Income, Height vs. Weight). Sl relationships are those in which random samples are drawn from a population and two characteristics (X and Y or IV and DV) are measured. In SI relationships either variable may be the dependent variable, and thus two regression equations are possible. For Sl relationships, R does indicate the extent of correlation between DV and f (IV) over the population where $f(\cdot)$ is the regression function. R is, of course, also a measure of how well the data group about $f(\cdot)$. S2 relationships differ from Sl relationships in that samples are not drawn randomly from a population but rather one of the variables is sampled only over a narrow range or at selected preassigned vaiues such that it is not representative of the entire population. In 32 relationships the only regression equation which is valid is that in which IV is the restricted variable. R relative to $S 2$ relationships
measures the extent of correlation between $D V$ and $f(I V)$ over the restricted sample generated by IV (not over the population). Thus the statistician must use caution in analyzing the significance of R for $S 2$ relationships. Also, as with all S and F relationships, R is a measure of how well the data group about $f(\cdot)$.

Statistical Tests

The $1-\alpha$ confidence interval for the $i^{\text {th }}$ regression coefficient, A_{i}, is given as

$$
\left(A_{i}-t_{1-\alpha / 2} \times \operatorname{STD}\left(A_{i}\right), A_{i}+t_{1-\alpha / 2} \times \operatorname{STD}\left(A_{i}\right)\right)
$$

where $t_{1-\alpha / 2}$ is found from a one-tailed t table with $N-J$ degrees of freedom.

The 1-a confidence interval for $D V$ corresponding to a fixed value, IV is given as

$$
\left(D V E_{I V}-t_{1-\alpha / 2} \times \operatorname{STD}\left(D V E_{I V}\right), D V E_{I V}+t_{1-\alpha / 2} \times \operatorname{STD}\left(D V E_{I V}\right)\right)
$$

where $t_{1-\alpha / 2}$ is from a one-tailed t table with $N-J$ degrees of freedome, $D \bar{V} E_{I V}=\operatorname{DVE}$ corresponding to the chosen IV, and

$$
\operatorname{STD}\left(D V E_{I V}\right)=\operatorname{STD}(D V-D V E) \times \sqrt{1+L^{\prime} \times M \times L}
$$

where $L^{\prime}=\left(I, I V^{1}, I V^{2}, \ldots I V^{D}\right)$ is the transpose of L, and M is the regression covariance matrix.

The 1- α confidence interval for $D V$ where $D V$ is the expected or average value of many experimental values of $D V$ corresponding to a fixed value, IV, is given as

$$
\left(D V E_{I V}-t_{I-\alpha / 2} \times \operatorname{STD}\left(\tilde{V V}_{I V}\right), D V E_{I V}+t_{1-\alpha / 2} \times \operatorname{STD}\left(\tilde{V V}_{I V}\right)\right)
$$

where all terms are as defined in the previous paragraph except that

$$
\operatorname{STD}\left(\tilde{\sim V E}_{I V}\right)=\operatorname{STD}(D V-D V E) \times \sqrt{L^{\prime} \times M \times L} .
$$

(Note that the 1 under the radical is missing here since we have removed the intrinsic variability of $D V$ by using $D V$.

2808

The l- α confidence band for the regression equation as a whole may be seen by plotting the two curves

$$
\begin{aligned}
& f^{+}(X)=D V E_{X}+S T D(D V-D V E) \times \sqrt{J \times F_{1-\alpha} \times \underline{X}^{\prime} \times M \times \underline{X}} \\
& f^{-}(X)=D V E_{X}-\operatorname{STD}(D V-D V E) \times \sqrt{J \times F_{1-\alpha} \times \underline{X}^{\prime} \times M \times \underline{X}}
\end{aligned}
$$

where X varies over the range of interest in IV,

$$
\underline{X}^{\prime} \quad=1, x^{1}, x^{2} \ldots x^{D} \text { is the transpose of } \underline{x} \text {, and }
$$ freedom. ${ }^{F_{I-\alpha}}$ is found from an F table with J and $N-J$ degrees of

EXAMPLE PROBLEM AND LSTSQR-1 LISTING
Virginia interstate highway data are available on cards, Format (F2.0, 2X, F8.0, 2X, F5.0, 1X, F4.0, 2X, F4.0, 1X, F6.0), as Calendar Year, Million Vehicle Miles, Mean Speed, STD of Speed, Accidents, and Miles of Roadway. The analyses desired are Mean Speed vs. Calendar Year (linear); Accidents vs. Mean Speed (quadratic); and Accidents vs. STD of Speed (cubic). Figure 1 shows the inputs necessary to perform these analyses. Figure 2 shows the results of the analyses.

The remainder of this section contains a listing of LSTSQR-1 written in FORTRAN IV for application on a CDC 6400 machine.

2420
-

$$
\text { LSTSQR -- vERSION1, JANUARY } 1976
$$

The independent varianle, iv, is

$$
\begin{aligned}
& \text { IV } \\
& \text { INDEHENDENT } \\
& \text { VAHPAHLE } \\
& 66.0000000000 \\
& 66.000000000 \\
& 67.0000000000 \\
& 64.000000000 \\
& 64.0000000000 \\
& 70.0000000000 \\
& 71.000000000 \\
& 72.0000000000 \\
& 73.0000000000
\end{aligned}
$$

Figure 2 (cont.)
Pagt 2

*** THE FOLLOWING STATISTICS ARE BSIUN STATISTICS UN DV ANO IV. fot VARC AIVU VARI ***.
$.21<310370370$
$.5 \angle C 40.5765564$
$.21<970476190$ $2.0<117340138$ 6.01055000010 N
N
N
N
N
0
0
n
\cdots
\cdots 1.44999999994 .9025
$.90 b z$

[^1]Figure 2 (cont.)

$$
-3<3.622829489
$$
9 data points were useu to fit the equation
dy = sum(all)alvall, $=0,2$
\[

$$
\begin{aligned}
& 3481.20417366 \\
& 3826.04545724 \\
& 5060.18504431 \\
& 5745.00002479 \\
& 6236.24309613 \\
& 7219.57147190 \\
& 7080.59613808 \\
& 8648.85010445 \\
& 9399.02282949
\end{aligned}
$$
\]

VIRGINIA INTEHSTAIE SYSIEM 65 THROUGH 73

LSTSQR -- VERSIONI, JANUARY 1970

Figure 2 (cont.)
\sim
\vdots
$\stackrel{u}{a}$
UEGREES OF
FHEEUGM
0
0
0
0
Figure 2 (cont.)

VIHGINIA INTERSTAIE SYSTEM OS TRINOUGH 73
Y DATA HOINTS WEHE USEU TO FIT THE EQUATION
$0 V=\operatorname{Sum}(A(I) * l V a d) \cdot 1=0 \cdot 3$ DV-DVE
WEGKESSIUN
ERKUK
-1037.85857037
60.2119240100
81.0696512435
-2002.72317204
315.881397420
-544.438605926
10.4066424072
2042.24955970
1207.60102972

$$
1800862.80751
$$

$$
1843.84616126
$$

$$
.342409062422
$$

\[

\]

$$
\begin{aligned}
& .7140 \\
& .5100
\end{aligned}
$$

$$
\varepsilon c ッ \theta \varepsilon a p \cdot \varepsilon G I
$$

$$
\begin{aligned}
& \angle 9006 \cdot+9 E A ?-
\end{aligned}
$$

$$
\begin{array}{r}
\angle 900 \mathrm{~B} \cdot \mathrm{OQEAR-} \\
\varepsilon \cdot 0
\end{array}
$$

RLLZO•OITPHED
ع6尹วOE.LL・と.00z
IGEG0・ロG大aheE
Figure 2 （cont．）
THE ASSOCIATEO F STATISTIC HAS 4 ANO b DEGREES OF fREEVOM．
the last data set has bern rrocessel．end uf hrogham lstsur－1．

－zRO

0900057
0900057

 00
0
3
3

0800057
0800057
5
0010ns 7
80
0
0
3
3
LSgollo

3
0
0
3
3
$0 ヶ 20057$
j
0
0
0 ［ONST
$?$
$0<10057$
$0410 n 57$
03
$x=3$
3
3
3
3
0
O
こ
3
3

$\begin{array}{r}C \\ 1.54020 \\ \hline\end{array}$
C
LSuO230
LSGO230
LSUOC40
LSUOCS0
LSGO260

UATA DEGKEE／I／

DATA IPOWEH，DPOWEH／1．1／
UATA ITRANS．UTRANS／1，1／
UATA IVAROUVAK／I．CI
DATA LEKU．LIST／．FALSE．．．THUL．／

DATA TITLE／C＂n $" . "$ TI＂，＂tLE＂，＂UMIT＂，＂TEO＂，＂EY U＂，＂SER＂，己＂n
＂．＂
＂，04＂

INTEGER CARUIM（21），FORMAT（10）•Kb（10），MFMT（45），PIVOT（10），TITLE（1）
－VARNAM（10．2）
REAL A（10），UATA（2），MATKIX $(10,21)$ ，SUV（11），SIV（19）
INTEGEK CARUIM（21），FORMAT（10），Kb（10），MFMT（45），PIVOT（10），TITLE（1
－VAKNAM（10．2）
 \qquad －＂，
$\cup \quad \cup$

2028

 ưuuuvuou

$$
* * \text { STAHT OF LSISUR-1 COOE } \#
$$

TRANSFEK UN VALUE OF KEY．
 コニコロートロコロロロッ OgOOOg OOOOO
 B．

LSO1000
LSO1010
LSO10＜0 LSOLOCO
LSOLO20 $0 \rightarrow 0$ TiNS
$0<01057$ $090[057$
0501057 0801057
0101057
0901057 000
003
303
$n=13$
n 03
03
3
3
3

00u
$\varepsilon 209$
2209

6052

 C
C

[^2]$J=U E$ GREE +1
$J=J+1$
$J Z=2 * O E G K t$

KOELT (I,J) $=(I / J) *(J / I)$
SINGULR = •FALSt.
$\mathrm{NI}=\mathrm{N}+\mathrm{I}$
If (INVERT) GO TO<O
$N * T+N=N N$
$0010 \quad I=1, N$
PIVOT (I) =I
GOTO 100
INVERT IS .THUR.
0

FIND OPTIMAL PIVOT RUWS AND KEOUCE G IO AN UPHEK TRIANGULAR MATRIX.
(THE ENTIRE A MATRIX IS ALTEREU IN THIS HROCESS.)

$$
\begin{aligned}
& \text { NM=N-1 } \\
& \text { UO } 1201=1, N M \\
& \text { MAX }=0 . U \\
& \text { UO } 110 J=I, N \\
& J J=H I V U T(J) \\
& \text { SUM }=0: 0 \\
& \text { OO } 10 S K=1, N \\
& \text { SUM }=\text { SUM + AHS(A }(J J, K)) \\
& \text { CONTINUE }
\end{aligned}
$$

IF (SUM.EQ. 0.0$)$ GU TO 900
SUM $=A B S(A(J J . I)) / S U M$
C^{105}

2058

2060

REFERENCES

1. Beyer, William H., Handbook of Probability and Statistics, The Chemical Rubber Company, 1968.
2. Breiman. Leo, Statistics, With a View Toward Applications, Houghton Mifflin Company, 1973.
3. Ezekiel, Mordecai, Methods of Correlation Analysis, John Wiley \& Sons, Inc., 1941.
4. Lindley, D. V., Introduction to Probability and Statistics, Volume 2, Inference, Cambridge University Press, 1970.
5. Natrella, Mary G., Experimental Statistics, National Bureau of Standards Handbook 91, U. S. Government Printing Office, 1966.
6. Pearson, Carl E., Handbook of Applied Mathematics, Van Nostrand Reinhold Company, 1974.
7. Spiegel, Murry R., Statistics, McGraw Hill Book Company, 1961.
2062

[^0]: *Notice that these definitions are precipitated by the fact that $A V G(D V-D V E) \equiv 0$ by virtue of the least squares regression process.

[^1]: heGKESSION COVARIANCE MATKIX, M(I,J), $1, J=0,1$
 $\begin{array}{cc}74.40111111 & -1.150000000 \\ -1.150000000 & .10 n 0066007 E-01\end{array}$

[^2]: NEAD (7.FOHMAT) UATA
 IF(EOF(7)) 310.340
 60 TO $(341,342,343,344,345,346,347,340,34 y)$, ITRANS

